inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Mohamed Abdelhedi,^{a,b} Mohamed Dammak,^b* Alain Cousson,^a Martine Nierlich^c and Kolsi Abdelwaheb^b

^aLaboratoire Léon Brillouin, CE/Saclay, Bât. 563, 91191 Gif-sur-Yvette Cedex, France, ^bLaboratoire de l'Etat Solide, Faculté des Sciences de Sfax, 3018 Sfax, Tunisia, and ^cSCM, CE/Saclay, Bât. 125, 91191 Gif-sur-Yvette Cedex, France

Correspondence e-mail: meddammak@yahoo.fr

Key indicators

Single-crystal X-ray study T = 298 KMean σ (S–O) = 0.009 Å H-atom completeness 0% Disorder in main residue R factor = 0.037 wR factor = 0.035 Data-to-parameter ratio = 10.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$Cs_2(SO_4)_{0.57}(SeO_4)_{0.43}$ ·Te(OH)₆, an adduct between dicaesium sulfate selenate and telluric acid

The title compound, dicaesium sulfate selenate-telluric acid adduct, $Cs_2(SO_4)_{0.57}(SeO_4)_{0.43}$ ·Te(OH)₆, is a solid solution in the series $Cs_2(SO_4)$ ·Te(OH)₆/Cs₂(SeO₄)·Te(OH)₆. It crystallizes in the same structure as the end member $Cs_2(SeO_4)$ ·Te(OH)₆ in space group $P2_1/c$, whereas the corresponding sulfate adopts another structure type and crystallizes in space group R3. The structure contains planes of statistically distributed SO_4/SeO_4 tetrahedra alternating with planes of Te(OH)₆ octahedra, and with Cs⁺ cations situated between the planes. Both Te atoms lie on centres of symmetry.

Comment

Pursuing our study of adducts between sulfate and/or selenate salts with telluric acid, among which we have solved the crystal structures of Cs_2SO_4 ·Te(OH)₆, Cs_2SeO_4 ·Te(OH)₆ (Dammak *et al.*, 2001) and Rb₂(SO₄)_{0.5}(SeO₄)_{0.5}·Te(OH)₆ (Abdelhedi *et al.*, 2005), we have grown crystals of $Cs_2(SO_4)_{0.57}(SeO_4)_{0.43}$ ·Te(OH)₆, (I), from a solution of Cs_2SO_4 , Cs_2SeO_4 and telluric acid.

Compound (I) is a solid solution in the series $Cs_2(SO_4) \cdot Te(OH)_6/Cs_2(SeO_4) \cdot Te(OH)_6$ and crystallizes in the same space group as the end member $Cs_2(SeO_4) \cdot Te(OH)_6$, whereas the sulfate end member adopts another structure type in space group *R3* (Dammak *et al.*, 2001). In (I), the S and Se atoms are statistically distributed over the same site. The crystal structure can be regarded as being built up of planes of Te(OH)_6 octahedra (at x = 0 and $\frac{1}{2}$) alternating with planes of XO_4 tetrahedra (at $x = \frac{1}{4}$ and $\frac{3}{4}$; X = S and Se), with Cs⁺ cations intercalated between the planes (Figs. 1 and 2). In the XO_4 tetrahedra, the X-O distances range from 1.511 (9) Å to

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Projection of the crystal structure of (I) on to the ac plane.

Received 16 September 2005 Accepted 24 October 2005

Online 31 October 2005

Figure 2

Part of the crystal structure of (I), with displacement parameters drawn at the 50% probability level. [Symmetry codes: (a) -x, -y, 1 - z; (b) 1 - x, 1 - y, 1 - z.]

1.558 (9) Å, intermediate between those observed in the end members Cs_2SO_4 ·Te(OH)₆ [1.399 (10)–1.405 (7) Å] and Cs_2SeO_4 ·Te(OH)₆ [1.630 (4)–1.649 (4) Å; Dammak *et al.*, 2001]. The Te atoms occupy two sites, giving rise to two kinds of octahedra, *viz*. Te1O₆ and Te2O₆, having bond lengths and angles similar to those in K₂SO₄·Te(OH)₆ (Zilber *et al.*, 1980) and Tl₂SO₄·Te(OH)₆ (Zilber *et al.*, 1982) (Table 1). The coordination environments around both Cs cations are slightly different, with Cs1 having ten coordination partners and Cs2 having 11 coordination partners (Table 1; Figs. 3 and 4). In contrast, the Rb cations in Rb₂(SO₄)_{0.5}(SeO₄)_{0.5}·Te(OH)₆ (Abdelhedi *et al.*, 2005) and the Cs cations in Cs₂SeO₄·Te(OH)₆ (Dammak *et al.*, 2001) are ninefold coordinate.

Experimental

Crystals were grown at room temperature by evaporating an aqueous solution of telluric acid, H_6 TeO₆ (Aldrich, 99%), caesium carbonate, Cs₂CO₃ (Aldrich 99.9%), selenic acid, H_2 SeO₄ (Aldrich 94%) and caesium sulfate Cs₂SO₄, (Aldrich 99.999%) (in the stoichiometric ratio 1:0.5:0.5:0.5). After a few days, colourless single crystals of Cs₂(SO₄)_{0.57}(SeO₄)_{0.43}·Te(OH)₆ were obtained.

Crystal data

	2	X1-O9	1.558 (9)
$Cs_2(SO_4)_{0.57}(SeO_4)_{0.43}$ ·Te(OH) ₆	$D_x = 3.765 \text{ Mg m}^{-3}$	X1-O10	1.546 (8)
$M_r = 611.68$	Mo $K\alpha$ radiation	Cs1-O5 ⁱⁱⁱ	2.988 (9)
Monoclinic, $P2_1/c$	Cell parameters from 986	Cs1-O1 ⁱⁱⁱ	3.065 (9)
$a = 12.2646 (4) \text{\AA}$	reflections	Cs1-O3 ^{iv}	3.116 (9)
b = 7.3926 (4) Å	$\theta = 1.8-25.8^{\circ}$	$Cs1-O2^{v}$	3.147 (9)
c = 12.6354 (6) Å	$\mu = 11.12 \text{ mm}^{-1}$	$Cs1-O7^{v}$	3.255 (9)
$\beta = 111.095 \ (3)^{\circ}$	T = 298 K	$Cs1 - O9^{vi}$	3.292 (9)
V = 1068.84 (9) Å ³	Prism, colourless	O1 ⁱ -Te1-O2 ⁱ	86.5 (4)
Z = 4	$0.10 \times 0.05 \times 0.05 \text{ mm}$	O1 ⁱ -Te1-O3 ⁱ	91.3 (4)
		O2 ⁱ -Te1-O3 ⁱ	88.5 (4)
Data collection		O2 ⁱ -Te1-O1	93.5 (4)
Nonius KappaCCD diffractometer	1881 independent reflections	$O3^{i}$ -Te1-O1	88.7 (4)
φ scans	1216 reflections with $I > 3\sigma(I)$	$O3^{i}$ -Te1-O2	91.5 (4)
Absorption correction: multi-scan	$R_{int} = 0.042$	$O4^{ii}$ -Te2- $O6^{ii}$	87.9 (4)
(using intensity measurements)	$\theta = 25.8^{\circ}$	$O4^{ii}$ -Te2-O5 ⁱⁱ	88.5 (3)
MULABS in <i>PLATON</i> (Spek,	$h = -14 \rightarrow 14$	$O6^{ii}$ -Te2-O5 ⁱⁱ	87.8 (4)
2003)	$k = -8 \rightarrow 0$	Symmetry codes:	(i) $-x, -y, -z$
$T_{\min} = 0.541, \ T_{\max} = 0.573$	$l = 0 \rightarrow 14$	$-x+1, y-\frac{1}{2}, -z+\frac{1}{2};$ (iv) $-x + 1, y + \frac{1}{2}$
2044 measured reflections		(vii) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$	$\frac{1}{2}$; (viii) $x, -y + \frac{1}{2}$

The coordination of Cs1.

Refinement

Refinement on F $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.035$ S = 0.941216 reflections 114 parameters H-atom parameters not refined Weighting scheme: Chebychev polynomial (Watkin, 1994; Prince, 1982) $w = [1 - (F_o^2 - F_c)^2/36\sigma^2(F_o)]^2/$ $[2.38T_0(x) - 2.95T_1(x) +$ $2.50T_2(x) - 1.02T_3(x) +$ $0.340T_4(x)]$, where $x = F/F_{max}$; robust weighting (Prince, 1982)

 $\begin{array}{l} (\Delta/\sigma)_{max} < 0.001 \\ \Delta\rho_{max} = 2.43 \ e \ {\rm \AA}^{-3} \\ \Delta\rho_{min} = -2.54 \ e \ {\rm \AA}^{-3} \\ Extinction \ correction: \ Larson \ (1970) \\ Extinction \ coefficient: \ 17.2 \ (14) \end{array}$

Table 1

Selected geometric parameters (Å, °).

X is disordered S/Se on a single site.

Te1-O1 ⁱ	1.935 (8)	Cs1-O8 ^{iv}	3.334 (9)
Te1-O2 ⁱ	1.917 (8)	Cs1-O1 ^{vii}	3.413 (9)
Te1-O3 ⁱ	1.896 (8)	Cs1-O6 ^{viii}	3.460 (9)
Te2-O4 ⁱⁱ	1.937 (8)	Cs1-O7 ⁱⁱⁱ	3.698 (8)
Te2-O6 ⁱⁱ	1.925 (8)	$Cs2-O6^{ix}$	3.098 (8)
Te2-O5 ⁱⁱ	1.905 (8)	Cs2-O4	3.109 (8)
X1-07	1.511 (9)	$Cs2-O2^{x}$	3.133 (9)
X1-O8	1.526 (8)	Cs2-O3 ⁱⁱ	3.153 (9)
X1-O9	1.558 (9)	$Cs2-O9^{iv}$	3.165 (9)
X1-O10	1.546 (8)	Cs2-O8 ^{xi}	3.248 (9)
Cs1-O5 ⁱⁱⁱ	2.988 (9)	Cs2-O4 ^{iv}	3.301 (8)
Cs1-O1 ⁱⁱⁱ	3.065 (9)	Cs2-O5 ^{iv}	3.337 (8)
Cs1-O3 ^{iv}	3.116 (9)	$Cs2-O10^{ii}$	3.404 (8)
$Cs1-O2^{v}$	3.147 (9)	$Cs2-O10^{ix}$	3.639 (10)
$Cs1 - O7^{v}$	3.255 (9)	$Cs2-O6^{iv}$	3.675 (9)
Cs1-O9 ^{vi}	3.292 (9)		
$O1^{i}$ -Te1- $O2^{i}$	86.5 (4)	O6 ⁱⁱ -Te2-O4	92.1 (4)
O1 ⁱ -Te1-O3 ⁱ	91.3 (4)	O5 ⁱⁱ -Te2-O4	91.5 (3)
O2 ⁱ -Te1-O3 ⁱ	88.5 (4)	O6 ⁱⁱ -Te2-O5	92.2 (4)
O2 ⁱ -Te1-O1	93.5 (4)	O7-X1-O8	110.8 (5)
O3 ⁱ -Te1-O1	88.7 (4)	O7-X1-O9	107.3 (4)
O3 ⁱ -Te1-O2	91.5 (4)	O8-X1-O9	108.6 (5)
O4 ⁱⁱ -Te2-O6 ⁱⁱ	87.9 (4)	O7-X1-O10	108.1 (5)
O4 ⁱⁱ -Te2-O5 ⁱⁱ	88.5 (3)	O8-X1-O10	108.6 (5)
$O6^{ii}$ -Te2-O5 ⁱⁱ	87.8 (4)	O9-X1-O10	113.4 (5)

Symmetry codes: (i) -x, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z; (vi) -x + 1, -y, -z; (vii) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (viii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ix) x, y + 1, z; (x) x + 1, y + 1, z; (xi) $-x + 1, y + \frac{3}{2}, -z + \frac{1}{2}$.

Figure 4 The coordination of Cs2.

For the refinement of the occupation factors for S and Se, their sum was restrained to be equal to 1. The highest peak is situated 1.00 Å from Cs2, and the deepest hole 0.63 Å from S/Se. H atoms could not be located.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO;

program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *DIAMOND* (Brandenburg & Berndt, 1999); software used to prepare material for publication: *CRYS-TALS*.

References

- Abdelhedi, M., Dammak, M., Cousson, A. & Kolsi, A. W. (2005). J. Alloys Compd. 398, 55–61.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Brandenburg, K. & Berndt, M. (1999). *DIAMOND*. Version 2.1.b. Crystal Impact GbR, Bonn, Germany.
- Dammak, M., Mhiri, T., Jaud, J. & Savariault, J. M. (2001). Int. J. Inorg. Mater. 3, 861–873.
- Larson, A. C. (1970). *Crystallographic Computing*, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 29. Copenhagen: Munksgaard.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.
- Spek, A. L. (2003). PLATON. University of Utrecht, The Netherlands.
- Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
- Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1980). Acta Cryst. B36, 2743–2745.
- Zilber, R., Durif, A. & Averbuch-Pouchot, M. T. (1982). Acta Cryst. B38, 1554– 1556.